我国古代许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。
在整数性质的研究中,人们发现质数是构成正整数的基本 “材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。
德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。
数论研究的主要内容
数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。
数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。
初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。
解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于
“ 质数有无限多个 ”
这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了
“ 三角和方法 ” ,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决 “ 哥德巴赫猜想 ”
问题中也使用的是解析数论的方法。代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。
几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象
是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。
由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用
“ 孙子定理 ”
来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。
数论在数学中的地位是独特的,高斯曾经说过 “数学是科学的皇后,数论是数学中的皇冠”。
在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、丢番图方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆
垒素数论方面的研究是享有盛名的。在新中国建立之后,有关数论的研究得到了很快的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,取得了世界领先的优秀成绩。特别是陈景润在 1966 年证明 “
哥德巴赫猜想 ” 的 “ 一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和 ”
以后,在国际数学引起了强烈的反响,称赞陈景润的论文是筛法的光辉顶点。至今,这仍是 “ 哥德巴赫猜想 ” 的最好结果。
|