历史上有不少这样有趣的巧合。这个故事也使人想起了以前在清华也有一个类似的情形,就是阿达玛在清华讲课的时候,开始听课的人也是很多
的,没有空位子,可是两周之后就只有老师和学生华罗庚两个人了。
解放后,当年听了《堆垒素数论》课的闵嗣鹤,后来在北大给学生开设了数论专业课。同时,1966年他也成为了陈景润论文的审稿人。
在中国,能够审查这个文章的人实在是不多,只有经过专门的训练,具备大量的数论知识人才能胜任这个工作。
1941年华罗庚完成了数论巨著《堆垒素数论》。他是在非常艰苦的条件大约用了两年的时间完成了《堆垒素数论》这本专著,他在书中全面论述了三角和估计及其在华林—哥德巴赫问题上的应用。全书
共12章,除西革尔关于算术数列素数定理未给证明外,所有定理的证明均包含在内。
五十年代,华罗庚撰写了两本关于数论方面的书。1953年
在国内出版的《堆垒素数论》中有大量未公开发表的结果,以及三角和方面的基本材料,华林问题和他利问题等。他在序言中说,长期以来学生们希望有一本数论方面的基础参考书,他为满足这方面的要求写了这本书。他说,在数学史上,数论的思想和方法影响着其他领域的发展。反之,其他领域中的发展就也常常被用来解决数论中的问题。他列举了数论和其他领域之间互相作用的三个例子:
(一)数论同福里哀积分;
(二)分解自然数问题,把自然数表示为四个数平分和的问题及模函数理论;
(三)二项型,模变换,及罗巴契夫斯基几何。
序言中提到的第二个数学方面的议题是:“从具体结果到抽象结果的进展。
国际性数学杂志《数学评论》高度评价说:“这是一本有价值的,重要的教科书,有点象哈代与拉依特的《数论导引》,但在范围上已越过了它。这本书清晰而深入潜出的笔法也受到称赞,推荐它作为那些想研究中国数学的人的一本最好的入门书。”
1946年,华罗庚赴美国访问,先在普林斯顿高等研究所搞研究并讲授数论,1948年美国伊利诺大学聘请华罗庚为终身教授,他转到依利诺大学,也对维诺格拉朵的中值公式做了重要的简化、改进与应用。
|