论数学的本质

林夏水

数学的本质是一个数学认识论问题。不同时代的哲学家和数学家都从认识论角度提出不同的理论和观点。但随着数学的发展又暴露出它们的片面性或局限性,特别是,当计算机引起数学研究方式的变革时,又提出有关数学本质更深层次的问题,从而推动着人们全面而辩证地认识数学的本质。

  
一、数学认识的一般性与特殊性 

数学作为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再实践的认识路线。但是,数学对象(量)的特殊性和抽象性,又产生与其他科学不同的、特有的认识方法和理论形式。由此产生数学认识论的特有问题。 

数学认识的一般性 

认识论是研究认识的本质以及认识发生、发展一般规律的学说,它涉及认识的来源、感性认识与理性认识的关系、认识的真理性等问题。数学作为对客观事物的一种认识,其认识论也同样需要探讨这些问题;其认识过程,与其他科学认识一样,也必然遵循实践——认识——再实践这一辩证唯物论的认识路线。

事实上,数学史上的许多新学科都是在解决现实问题的实践中产生的。最古老的算术和几何学产生于日常生活、生产中的计数和测量,这已是不争的历史事实。数学家应用已有的数学知识在解决生产和科学技术提出的新的数学问题的过程中,通过试探或试验,发现或创造出解决新问题的具体方法,归纳或概括出新的公式、概念和原理;当新的数学问题积累到一定程度后,便形成数学研究的新问题(对象)类或新领域,产生解决这类新问题的一般方法、公式、概念、原理和思想,形成一套经验知识。这样,有了新的问题类及其解决问题的新概念、新方法等经验知识后,就标志着一门新的数学分支学科的产生,例如,17世纪的微积分。由此可见,数学知识是通过实践而获得的,表现为一种经验知识的积累。

这时的数学经验知识是零散的感性认识,概念尚不精确,有时甚至导致推理上的矛盾。因此,它需要经过去伪存真、去粗取精的加工制作,以便上升为有条理的、系统的理论知识。

数学知识由经验知识形态上升为理论形态后,数学家又把它应用于实践,解决实践中的问题,在应用中检验理论自身的真理性,并且加以完善和发展。同时,社会实践的发展,又会提出新的数学问题,迫使数学家创造新的方法和思想,产生新的数学经验知识,即新的数学分支学科。由此可见,数学作为一种认识,与其他科学认识一样,遵循着感性具体——理性抽象——理性具体的辩证认识过程。这就是数学认识的一般性。

数学认识的特殊性 

科学的区分在于研究对象的特殊性。数学研究对象的特殊性就在于,它是研究事物的量的规定性,而不研究事物的质的规定性;而“量”是抽象地存在于事物之中的,是看不见的,只能用思维来把握,而思维有其自身的逻辑规律。所以数学对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在数学知识由经验形态上升为理论形态的特有的认识方法——公理法或演绎法,以及由此产生的特有的理论形态——公理系统和形式系统。因此,它不能像自然科学那样仅仅使用观察、归纳和实验的方法,还必须应用演绎法。同时,作为对数学经验知识概括的公理系统,是否正确地反映经验知识呢?数学家解决这个问题与自然科学家不尽相同。特别是,他们不是被动地等待实践的裁决,而是主动地应用形式化方法研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。为此,数学家进一步把公理系统抽象为形式系统。因此,演绎法是数学认识特殊性的表现。

二、概括数学本质的尝试

数学认识的一般性表明,数学的感性认识表现为数学知识的经验性质;数学认识的特殊性表明,数学的理性认识表现为数学知识的演绎性质。因此,认识论中关于感性认识与理性认识的关系在数学认识论中表现为数学的经验性与演绎性的关系。所以,认识数学的本质在于认识数学的经验性与演绎性的辩证关系。那么数学哲学史上哲学家是如何论述数学的经验性与演绎性的关系,从而得出他们对数学本质的看法的呢?

数学哲学史上最早探讨数学本质的是古希腊哲学家柏拉图。他在《理想国》中提出认识的四个阶段,认为数学是处于从感性认识过渡到理性认识的一个阶梯,是一种理智认识。这是柏拉图对数学知识在认识论中的定位,第一次触及数学的本质问题。

17世纪英国经验论哲学家J.洛克在批判R.笛卡尔的天赋观念中建立起他的唯物主义经验论,表述了数学经验论观点。他强调数学知识来源于经验,但又认为属于论证知识的数学不如直觉知识清楚和可靠。

德国哲学家兼数学家莱布尼茨在建立他的唯理论哲学中,阐述了唯理论的数学哲学观。他认为:“全部算术和全部几何学都是天赋的”;数学只要依靠矛盾原则就可以证明全部算术和几何学;数学是属于推理真理。他否认了数学知识具有经验性。 

德国哲学家康德为了克服唯理论与经验论的片面性,运用他的先验论哲学,从判断的分类入手,论述了数学是“先天综合判断”。由于这一观点带有先验性和调和性,所以它并没有解决数学知识的经验性与演绎性的辩证关系。

康德以后,数学发展进入一个新时期,它的一个重要特点是公理化倾向。这一趋势使大多数数学家形成一种认识:数学是一门演绎的科学。这种观点的典型代表是数学基础学派中的逻辑主义和形式主义。前者把数学归结为逻辑,后者把数学看作是符号游戏。1931年哥德尔不完全性定理表明了公理系统的局限性和数学演绎论的片面性。这就使得一些数学家开始怀疑“数学是一门演绎科学”的观点,提出,数学是一门有经验根据的科学,但它并不排斥演绎法。这引起一场来自数学家的有关数学本质的讨论。

拉卡托斯为了避免数学演绎论与经验论的片面性,从分析数学理论的结构入手,提出数学是一门拟经验科学。他说:“作为总体上看,按欧几里得方式重组数学也许是不可能的,至少最有意义的数学理论像自然科学理论一样,是拟经验的。”尽管拉卡托斯给封闭的欧几里得系统打开了第一个缺口,但是,拟经验论实际上是半经验论,并没有真正解决数学性质问题,因而数学家对它以及数学哲学史上有关数学本质的概括并不满意。1973年,数理逻辑学家A.罗宾逊说:“就应用辩证法来仔细分析数学或某一种数学理论(如微积分)而言,在我所读的从黑格尔开始的这方面的著作中,还没有发现经得起认真批判的东西。”因此,当计算机在数学中的应用引起数学研究方式的变革时,特别是当计算机证明了四色定理和借助计算机进行大量试验而创立分形几何时,再次引起了数学家们对“什么是证明?”“什么是数学?”这类有关数学本质的争论。 

三、数学本质的辩证性

正因为一些著名数学家不满意对数学本质的概括,他们开始从数学研究的体验来阐明数学的经验性与演绎性的相互关系。D.希尔伯特说:数学的源泉就在于思维与经验的反复出现的相互作用,冯·诺伊曼说:数学的本质存在着经验与抽象的二重性;R.库朗说:数学“进入抽象性的一般性的飞行, 必须从具体和特定的事物出发,并且又返回到具体和特定的事物中去”;而A.罗宾逊则寄希望于:“出现一种以辩证的研究方法为基础的、态度认真的数学的哲学”。

本节将根据数学知识的三种形态(经验知识、公理系统和形式系统)及其与实践的关系,具体说明数学的经验性与演绎性的辩证关系。 

经验知识是有关数学模型及其解决方法的知识。数学家利用数学和自然科学的知识,从现实问题中提炼或抽象出数学问题(数学模型),然后求模型的数学解(求模型解),并返回实践中去解决现实问题。这一过程似乎是数学知识的简单应用,但事实并非如此。因为数学模型是主观对客观的反映,而人的认识并非一次完成,特别是遇到复杂的问题时,需要修正已有的数学模型及其求解的方法和理论,并经多次反复试验,才能解决现实问题。况且社会实践的发展,使得旧的方法和知识在解决新问题时显得繁琐,甚至无能为力,从而迫使数学家发明或创造新的方法、思想和原理,并在实践中得到反复检验,产生新的数学分支学科。这时的数学知识是在解决实践提出的数学问题中产生的,属于经验知识,具有经验的性质。

数学的经验性向演绎性转化 第一部分讲过,数学经验知识具有零散性和不严密性,有待于上升或转化为系统的理论知识;而数学对象的特殊性使得这种转化采取特殊的途径和方法——公理法,产生特有的理论形态——公理系统。所以,数学的经验性向演绎性的转化,具体表现为经验知识向作为理论形态的公理系统的转化。

公理系统 是应用公理方法从某门数学经验知识中提炼出少数基本概念和公理作为推理的前提,然后根据逻辑规则演绎出属于该门知识的命题构成的一个演绎系统。它是数学知识的具体理论形态,是对数学经验知识的理论概括。就其内容来说,是经验的;但就其表现形式来说,是演绎的,具有演绎性质。因为数学成果(一般表现为定理)不能靠归纳或实验来证实,而必须通过演绎推理来证明,否则,数学家是不予承认的。

公理系统就其对经验知识的概括来说,是理性认识对感性认识的抽象反映。为了证实这种抽象反映的正确性,数学家采取两种解决办法。一是让理论回到实践,通过实际应用来检验、修改理论。欧几里得几何的不严密性就是通过此种方法改进的。二是从理论上研究公理系统应该满足的性质:无矛盾性、完全性和公理的独立性。这就引导数学家对公理系统的进一步抽象,产生形式系统。

形式系统 是形式化了的公理系统,是由形式语言、公理和推理规则组成的。它是应用形式化方法从不同的具体公理系统中抽象出共同的推理形式,构成一个形式系统;然后用有穷推理方法研究形式系统的性质。所以,形式系统是撇开公理系统的具体内容而作的进一步抽象,是数学知识的抽象理论形态。它采用的是形式推理的方法,表现其知识形态的演绎性。

数学的演绎性向经验性的转化 这除了前面说过的认识论原因外,对公理系统和形式系统的研究也证实了这种转化的必要性。哥德尔不完全性定理严格证明了公理系统的局限性:(1 )形式公理系统的相容性不可能在本系统内得到证明,必须求助于更强的形式公理系统才能证明。而相容性是对公理系统最基本的要求,那么在找到更强的形式公理系统之前,数学家只能像公理集合论那样,让公理系统回到实践中去,通过解决现实问题而获得实践的支持。(2 )如果包含初等算术的形式公理系统是无矛盾的,那么它一定是不完全的。这就是说,即使形式系统的无矛盾性解决了,它又与不完全性相排斥。“不完全性”是指,在该系统中存在一个真命题及其否定都不可证明(称为不可判定命题)。所以,“不完全性”说明,作为对数学经验知识的抽象的公理系统,不可能把属于该门数学的所有经验知识(命题)都包括无遗。对于“不可判定命题”的真假,只有诉诸实践检验。因此,这两种情况说明,要解决公理系统的无矛盾性和不可判定命题,必须让数学的理论知识返回到实践接受检验。

由此可见,数学的认识过程是:在解决现实问题的实践基础上获得数学的经验知识;然后上升为演绎性的理论知识(公理系统和形式系统);再返回到实践中,通过解决现实问题而证实自身的真理性,完善或发展新的数学知识。这是辩证唯物论的认识论在数学认识论上的具体表现,反映了数学本质上是数学知识的经验性与演绎性在实践基础上的辩证统一。

四、数学是一门演算的科学

既然数学的本质是经验性与演绎性在实践基础上的辩证统一,那么能否对数学的本质进一步作出哲学概括呢?即用简洁的语言表达数学的本质,就像拉卡托斯说的“数学是拟经验的科学”那样。为此,本文提出,数学是一门演算的科学(其中“演”表示演绎,“算”表示计算或算法,“演算”表示演与算这对矛盾的对立统一)。在此,必须说明三点:何以如此概括?“演算”能否反映数学研究的特点以及能否反映数学本质的辩证性? 

1.何以如此概括?

首先,从理论上讲,数学本质是数学观的一个重要问题,而数学观与数学方法论是统一的,所以可以通过方法论来分析数学观。数学认识对象的特殊性决定了数学认识方法的特殊性。这种特殊性表现在,数学研究除了像自然科学那样仅仅采用观察、实验、归纳的方法外,还必须采用演绎法。因此,可以通过研究数学认识方法来反映数学认识的本质。

其次,从事实上看,数学知识的经验性表明数学是适应社会实践需要而产生的,是解决实际问题的经验积累。社会实践提出的数学问题都要求给出定量的回答,而要作出定量的回答就必须进行具体的计算,所以计算表征了数学经验知识的特点。而对于各种具体的计算方法及其一般概括的“算法”(包括公式、原理、法则),也都可以用“算”来概括、反映数学知识的经验性在方法论上的计算或算法特点。同时,数学知识的演绎性反映数学认识在方法论上的演绎特点,所以,可以用“演”来反映数学知识的演绎性。因此,我们可以用“演算”来反映数学本质的经验性与演绎性。

第三,为避免概括数学本质的片面性。自从数学分为应用数学与纯粹数学以后,许多数学家认为,数学来源于经验是很早以前的事,现在已经不是了,而是变成一门演绎科学了。而一般人也接受这种观点。但这样强调数学的演绎性特点,却忽视了数学具有经验性质的一面。为了避免这种片面性,这里特别通过数学方法论来概括和反映数学的本质。

2.“演算”反映了数学研究的特点

数学研究对象的特殊性产生了数学研究特有的问题:计算与证明。它们成为数学研究的两项主要工作。关于“证明”。数学对象的特殊性使得数学成果不能像自然科学成果那样通过实验来证实,而必须通过逻辑演绎来证明,否则数学家是不予承认的。所以,数学家如何把自己的成果表达成一系列的演绎推理(即证明)就成为重要工作。证明成为数学研究工作的重要特点。关于“计算”。数学本身就是起源于计算,即使数学发展到高度抽象理论的今天,也不能没有计算。数学家在证明一个定理之前,必须经过大量的具体计算,进行各种试验或实验,并加以分析、归纳,才能形成证明的思路和方法。只有在这时候,才能从逻辑上进行综合论证,表达为一系列的演绎推理过程,即证明。从应用数学来看,更是需要大量的计算,所以人们才发明各种计算机。在电子计算机广泛应用的今天,计算的规模更大了,以致在数学中出现数值实验。因此,计算成为数学研究的另一项重要工作。

既然“计算与证明”是数学研究的两项主要工作和特点,那么“数学是演算的科学”这一概括是否反映出这一特点?“证明”是从一定的前提(基本概念和公理)出发,按照逻辑规则所进行的一种演绎推理。而“演(绎)”正可以反映“证明”这一特点。而“算”显然更可以直接反映“计算”或“算法”及其特点。由此可见,“演算”反映了数学研究的计算和证明这两项基本工作及其特点。

3.“演”与“算”的对立统一反映数学性质的辩证性

首先,从数学发展的宏观来看。数学史告诉我们,数学起源于“算”,即起源于物体个数、田亩面积、物体长度等的计算。要计算就要有计算方法,当各种计算方法积累到一定数量的时候,数学家就进行分类,概括出适用于某类问题的计算公式、法则、原理,统称为算法。所以数学的童年时期叫做算术,它表现为一种经验知识。当欧几里得建立数学史上第一个公理系统时,才出现“演绎法”。此后,“演”与“算”便构成了数学发展中的一对基本矛盾,推动着数学的发展。这在西方数学思想史中表现最为突出。大致说来,在欧几里得以前,数学思想主要是算法;欧几里得所处的亚历山大里亚前期,数学主要思想已由算法转向演绎法;从亚历山大里亚后期到18世纪,数学主要思想再次由演绎法转向算法;19世纪到20世纪上半叶,数学主要思想又由算法转向演绎法;电子计算机的应用促进了计算数学的发展及其与之交叉的诸如计算流体力学、计算几何等边缘学科的产生以及数学实验的出现。这一切又使算法思想重新得到发展,成为与演绎法并驾齐驱的思想。可以预言,随着计算机作为数学研究工具地位的确立,算法思想将成为今后相当长一个时期数学的主要思想。算法思想与演绎思想在数学发展过程中的这种更迭替代,从一个侧面体现了“演”与“算”这对矛盾在一定条件下的相互转化。所以,有的数学史工作者从方法论的角度把数学的发展概括为算法倾向与演绎倾向螺旋式交替上升的过程。

其次,从数学研究的微观来看。“演”中有“算”,这充分表明了我们上面所分析的“证明”中包含着“计算”,包含着“算”向“演”转化。“算”中有“演”,这充分表现在算术和代数中。算术和代数表现为“算”,但是,算术和代数的“算”,并不是自由地计算,而是要遵循基本的四则运算及其规律,即计算要按照一定的计算规则,就像证明要遵守推理规则一样。所以“算”中包含着“演”,包含着“演”向“算”的转化。“演”与“算”的这种对立统一更充分地体现在计算机的数值计算和定理证明中。这种“算”与“演”的对立统一关系,从一个侧面反映了数学的经验性与演绎性的辩证关系,反映了数学性质的辩证性。

综上所述,既然“演算”概括了数学研究的特点,反映了数学的经验性与演绎性及其辩证关系,我们就有理由把它作为对数学本质的概括,说“数学是一门演算的科学”。