花拉子米还指出,任何二次方程都可以通过“还原”与“对消”(即移项与合并同类项)的步骤化成他所讨论的六种类型方程。由此可见,《代数学》关于方程的讨论已超越传统的算术方式,具有初等代数性质,不过,在使用代数符号方面,相对丢番图和印度人的工作有了退步。
花拉子米的另一本书《印度计算法》也是数学史上十分有价值的数学著作,其中系统介绍印度数码和十进制记数法,以及相应的计算方法。许多数学问题也采自于花拉子米的书,艾布·卡米勒(abukamil,约850~930)把埃及、巴比伦式的实用代数与希腊式理论几何结合起来,也常常用几何图示法证明代数解法的合理性。他的《计算技巧珍本》的传播和影响仅次于《代数学》。
花拉子米的另一著作《论五边形和十边形》包括几何和代数两方面的内容,关于四次方程解法和处理无理系数二次方程是其主要特色。
《代数学》的内容主要是算术问题,尽管所讨论的数学问题比丢番图和印度人的问题简单,但讨论一般性解法而比起丢番图的著作更接近于近代初等代数。
|