由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是Δs/Δt当Δt趋向于零时的值。Δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。
十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是烦琐。
但也因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。
十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。
一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。
波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。
在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε -
δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。
十九世纪七十年代初,威尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。
同时,威尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。
|