为了解决实际问题、人们必须发明出“零”来,然后要造出负数、有理数、无理数乃至虚数。所谓虚,就是不实,凭空想象出来的意思,不过解代数方程有必要把它请进来,请进来后又觉得它不实在、不太放心。后来它用处很大,能解决非它不可的问题,于是轰也轰不走了。
复数挤进数学王国之后,跟着四元数、八元数、超复数……都来了,它们可没有复数都么大的用处,甚至根本没用。要还是不要呢?这也使数学家处于为难的境地。数学家经常处于这种矛盾的过程中。 “什么是存在?”,这是数学的一个基本问题。什么东西可以挤进数学王国?直觉主义者规定一个较窄的限制:必须能够一步一步构造出来;而形式主义者规定一个较宽的限制:只要没有矛盾就行了。不过什么叫没有矛盾?当然逻辑没有矛盾,其实就是遵守形式逻辑规律。可是形式逻辑是从人类有限经验推出来的,对于无穷情形还灵不灵?这当然存在问题,可是不许推广,那数学还能剩下多少靠得住的东西呢?
在数学史上这种矛盾也是屡见不鲜的。无穷小量刚出现时,漏洞百出、无法自圆其说,可是行之有效、解决问题。所以达朗贝尔说:“前进,你就能恢复信心!”,这可以说是一种实用主义态度。
十九世纪,柯西和维尔斯特拉斯用极限概念解决了矛盾,同时也扔掉了无穷小,这里无矛盾性占了上风。1961年,罗滨逊发明非标准分析,又把无穷小量请了回来,仍然没有矛盾。不过它是建立在模型论基础上,要承认非可数无穷基数的存在。
承认无穷集合,承认无穷基数,就好象打开潘朵拉的盒子,一切灾难都出来了。这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以回避,数学的确定性却在一步一步丧失。最近莫利斯·克莱因写了一本《数学—确定性的丧失》一书,就是讲的这件事。 现代公理集合论的一大堆公理简直难说孰真孰假,可是又不能把它们一古脑儿消除掉,它们跟整个数学可是血肉相连的。所以第三次危机表面上解决了,实质上更深刻地以其它形式延续看。矛盾既然是固有的,它的激烈冲突—危机也会给数学带来许多新内容,新认识,有时也带来革命性的变化。
把二十世纪的数学同前整个数学相比,内容不知丰富了多少,认识也不知深入了多少。在集合论的基础上,诞生了抽象代数学、拓扑学、泛函分析与测度论。数理逻辑也兴旺发达,成为数学有机整体的—部分。古代的代数几何、微分几何、复分析现在已经推广到高维,代数数论的面貌也多次改变,变得越来越优美、完整。一系列经典问题完满地得到解决,同时又产生更多的新问题。特别是二次大战之后,新成果层出不穷,从未间断。教学呈现无比兴旺发达的景象,而这正是人们在同数学中矛盾斗争的产物。
|